Linear technology for exacting requirements
Also in harsh everyday use, our linear technology performs reliably – throughout its service life without maintenance.
ELA range
![]() |
The electromechanical linear actuators, “ELA” for short, consist of a fully enclosed aluminium housing with worm gear pair and thrust bearing, together with a standard built-in motor as well as a thrust and guide tube construction. They are designed for pressure and tensile load and can be installed in any mounting position for all purposes. Robustness as well as reliability particularly characterise the linear actuators.
Equipment and processing
• 4 different sizes with lifting capacities of 5.5 to 13 kN
|
Selection tables ELA range
Three-phase motor table
Selection table |
Trapezoidal screw Tr |
Ball screw Ku |
||||||||
Motor |
Three-phase |
Three-phase |
||||||||
Size | 10.1. | 20.1 | 30.1 | 40.1 | 10.1 | 20.1 | 30.1 | 40.1 | ||
Max. axial force | F [N] stat. | 2500 | 4500 | 8000 | 13000 | 2500 | 4500 | 8000 | 13000 | |
Screw | 12x3 | 16x4 | 22x5 | 22x5 | 12x5 | 16x5 | 20x5 | 25x6 | ||
Weight approx. | [kg] | 6 | 10 | 15 | 20 | 6 | 10 | 15 | 20 | |
Ratio H | 4:1 | 4:1 | 2,78:1 | 6,75:1 | 4:1 | 4:1 | 2,78:1 | 6,75:1 | ||
Max. tensile/compr. force | F [N] dyn. | 550 | 1250 | 1500 | 5000 | 600 | 1350 | 3000 | 6550 | |
Lifting speed | v [mm/sec] | 35 | 46,6 | 84 | 34,5 | 59 | 58 | 84 | 42 | |
Motor power | P [Watt] | 90 | 120 | 250* | 550 | 90* | 120* | 250* | 550* | |
Ratio V | 6,5:1 | 6,5:1 | 5:1 | 10:1 | 6,5:1 | 6,5:1 | 5:1 | 10:1 | ||
Max. tensile/compr. force | F [N] dyn. | 900 | 1650 | 3500 | 6500 | 950 | 2150 | 5800 | 8500 | |
Lifting speed | v [mm/sec] | 22 | 31 | 46,6 | 23,3 | 36 | 37 | 47 | 28 | |
Motor power | P [Watt] | 90 | 120 | 250 | 550 | 90* | 120* | 250* | 550* | |
Ratio N | 15:1 | 15:1 | 10:1 | 20:1 | 15:1 | 15:1 | 10:1 | 20:1 | ||
Max. tensile/compr. force | F [N] dyn. | 1600 | 2750 | 6000 | 10000 | 1900 | 3500; | 6000 | 13000 | |
Lifting speed | v [mm/sec] | 9 | 13 | 23,3; | 11,5 | 16 | 15,6 | 23,3 | 14 | |
Motor power | P [Watt] | 90 | 120 | 250 | 550 | 90* | 120* | 250* | 550* | |
Ratio L | 25:1 | 25:1 | 20:1 | 25:1 | 25:1 | 25:1 | 20:1 | 25:1 | ||
Max. tensile/compr. force | F [N] dyn. | 2000 | 3500 | 6000 | 10000 | 2500 | 3500 | 6000 | 13000 | |
Lifting speed | v [mm/sec] | 5,5 | 7,5 | 11,7 | 9 | 9 | 9 | 11,7 | 11 | |
Motor power | P [Watt] | 90 | 120 | 250 | 550 | 90* | 120* | 250* | 550* |
*Brake motor |
Single-phase motor table
Selection table | Trapezoidal screw Tr | Ball screw Ku | ||||||||
Motor |
Single-phase |
Single-phase |
||||||||
Size | 10.1. | 20.1 | 30.1 | 40.1 | 10.1 | 20.1 | 30.1 | 40.1 | ||
Max. axial force | F [N] stat. | 2500 | 4500 | 8000 | 13000 | 2500 | 4500 | 8000 | 13000 | |
Screw | 12x3 | 16x4 | 22x5 | 22x5 | 12x5 | 16x5 | 20x5 | 25x6 | ||
Weight approx. | [kg] | 6 | 10 | 15 | 20 | 6 | 10 | 15 | 20 | |
Ratio H | 4:1 | 4:1 | 2,78:1 | 6,75:1 | 4:1 | 4:1 | 2,78:1 | 6,75:1 | ||
Max. tensile/compr. force | F [N] dyn. | 550 | 1200 | 1100 | 3500 | 700 | 1250 | 2200 | 5500 | |
Lifting speed | v [mm/sec] | 35 | 46,6 | 84 | 34,5 | 59 | 58 | 84 | 42 | |
Motor power | P [Watt] | 90 | 120 | 250* | 550 | 90* | 120* | 250* | 550* | |
Ratio V | 6,5:1 | 6,5:1 | 5:1 | 10:1 | 6,5:1 | 6,5:1 | 5:1 | 10:1 | ||
Max. tensile/compr. force | F [N] dyn. | 900 | 1600 | 2500 | 5300 | 1000 | 2000 | 4200 | 7500 | |
Lifting speed | v [mm/sec] | 22 | 31 | 46,6 | 23,3 | 36 | 37 | 47 | 28 | |
Motor power | P [Watt] | 90 | 120 | 250 | 550 | 90* | 120* | 250* | 550* | |
Ratio N | 15:1 | 15:1 | 10:1 | 20:1 | 15:1 | 15:1 | 10:1 | 20:1 | ||
Max. tensile/compr. force | F [N] dyn. | 1600 | 2300 | 4500 | 8500 | 2000 | 3500 | 4500 | 13000 | |
Lifting speed | v [mm/sec] | 9 | 13 | 23,3 | 11,5 | 16 | 15,6 | 23,3 | 14 | |
Motor power | P [Watt] | 90 | 120 | 250 | 550 | 90* | 120* | 250* | 550* | |
Ratio L | 25:1 | 25:1 | 20:1 | 25:1 | 25:1 | 25:1 | 20:1 | 25:1 | ||
Max. tensile/compr. force | F [N] dyn. | 2000 | 3500 | 6000 | 10000 | 2500 | 3500 | 6000 | 13000 | |
Lifting speed | v [mm/sec] | 5,5 | 7,5 | 11,7 | 9 | 9 | 9 | 11,7 | 11 | |
Motor power | P [Watt] | 90 | 120 | 250 | 550 | 90* | 120* | 250* | 550* |
*Brake motor |
Direct current table
Selection table | Trapezoidal screw Tr | Ball screw Ku | ||||||||
Motor |
DC | DC | ||||||||
Sizee | 10.1. | 20.1 | 30.1 | 40.1 | 10.1 | 20.1 | 30.1 | 40.1 | ||
Max. axialforce | F [N] stat. | 2500 | 4500 | 8000 | 13000 | 2500 | 4500 | 8000 | 13000 | |
Screw | 12x3 | 16x4 | 22x5 | 22x5 | 12x5 | 16x5 | 20x5 | 25x6 | ||
Weight approx. | [kg] | 6 | 10 | 15 | 20 | 6 | 10 | 15 | 20 | |
Ratio H | 4:1 | 4:1 | 2,78:1 | 6,75:1 | 4:1 | 4:1 | 2,78:1 | 6,75:1 | ||
Max. tensile/compr. force | F [N] dyn. | 700 | 1200 | 1100 | 3500 | 750 | 1250 | 2200 | 5500 | |
Lifting speed | v [mm/sec] | 35 | 46,6 | 84 | 34,5 | 59 | 58 | 84 | 42 | |
Motor power | P [Watt] | 70 | 150 | 300* | 500 | 70* | 150* | 300* | 500* | |
Ratio V | 6,5:1 | 6,5:1 | 5:1 | 10:1 | 6,5:1 | 6,5:1 | 5:1 | 10:1 | ||
Max. tensile/compr. force | F [N] dyn. | 1100 | 1600 | 2500 | 5300 | 1150 | 2000 | 4200 | 7500 | |
Lifting speed | v [mm/sec] | 22 | 31 | 46,6 | 23,3 | 38 | 37 | 47 | 28 | |
Motor power | P [Watt] | 70 | 150 | 300 | 500 | 70* | 150* | 300* | 500* | |
Ratio N | 15:1 | 15:1 | 10:1 | 20:1 | 15:1 | 15:1 | 10:1 | 20:1 | ||
Max. tensile/compr. force | F [N]dyn. | 1350 | 2300 | 4500 | 8500 | 1500 | 3500 | 4500 | 13000 | |
Lifting speed | v [mm/sec] | 10 | 13 | 23,3 | 11,5 | 15 | 15,6 | 23,3 | 14 | |
Motor power | P [Watt] | 70 | 150 | 300 | 500 | 70* | 150* | 300* | 500* | |
Ratio L | 25:1 | 25:1 | 20:1 | 25:1 | 25:1 | 25:1 | 20:1 | 25:1 | ||
Max. tensile/compr. force | F [N] dyn. | 2000 | 3500 | 6000 | 10000 | 2500 | 3500 | 6000 | 13000 | |
Lifting speed | v [mm/sec] | 5,5 | 7,5 | 11,7 | 9 | 9 | 9 | 11,7 | 11 | |
Motor power | P [Watt] | 70 | 150 | 300 | 500 | 70* | 150* | 300* | 500* |
*Brake motor |
![]() |
ELA40.1 to lower the gap bridging on a vehicle maintenance platform. In order to facilitate the bringing in and pulling out of vehicles at a maintenance platform, the running boards are lifted when pulling in and afterwards, after the vehicles comes to a stop, are lowered again. |
![]() |
ELA40.1 for the opening and closing of the covering of a sand silo in a concrete-mixing plant. To avoid the intrusion of rainwater into the sand silo, the covering is opened for the filling and afterwards closed again. |
